1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
#how to validate cuda available
if torch.cuda.is_available():
print('cuda is on')
else:
print('cuda is off')
#if available
#allocate tensor to default device
x=torch.LongTensor(1)
if torch.cuda.is_available():
x.cuda()
if torch.is_tensor(x):
print('x is a tensor')
print(torch.cuda.device_count())
#transfer tensor to a specified device
y=torch.LongTensor(1).cuda(0)
#you can use tensor.get_device() to show which device tensor located
print(y.get_device())
#gernerally,specified context manager to run code
with torch.cuda.device(0):
x=torch.cuda.LongTensor(1)
x=torch.randn(1,2).cuda(0)#even in context you can specified a device to locate tensor
#device-agnostic code
isCuda=torch.cuda.is_available()
x=torch.Tensor(1,2)
if isCuda:
x=x.cuda()
print(torch.eye(3,4))
1.Training on GPU
This post is licensed under
CC BY 4.0
by the author.